Why Trenchless Technology?!
The German Society for Trenchless Technology advocates the pioneering trenchless technology that combines economic efficiency and environmental protection. This modern approach for installing underground supply lines can be utilized for drinking water, wastewater, gas, heating, telecommunications or electricity lines.

GSTT’s goal is to promote this modern technology that has been proven and tested worldwide since 30 years. Together with international partners, GSTT is continuously working on advancing the science and the practice of trenchless technology for the public and environmental benefit.
What happens here if a pipeline has to be repaired?

A look into the underground.

A pipework like a spider’s web.

Why trenchless?!
worst case……
….a big trench
….a big building site
…. a lot of traffic jam and environment pollution

Why trenchless?!

…or like this …

NO DIG technologies will be used!

why digging trenches…..

..if there are better solutions?!
Advantages of trenchless method, direct costs:

- reduction of roadway rubble
- reduction of excavation and transportation of soil
- reduction of repositioning of other pipelines
- reduction of groundwater lowering

Economic savings, indirect costs:

- reduction of traffic jam
- reduction of noise- and CO₂-Emission
- reduction of risk of accidents
- reduction of risk to damage close-by buildings
- less influence of residents
- protection of vegetation and groundwater

Why trenchless?!

Savings as a result from trenchless construction from 1984 bis 2016

Saving direct costs in new constructions in the sewer field in Berlin from 1984 - 2017:

- **75 Mio. €** could be saved and thus invested in other projects
- **1,47 Mio. m²** Road surface had to be broken and therefore not restored
- **2,7 Mio. m³** Soil had to be excavated and not reinstalled or transported and disposed
- **223,000 Truckloads** had not be transported through the city
- **238 Mio. m³** Groundwater had to be not promoted (~ water supply of Berlin for approximately 14 months)
Comparison equipment use

- Conventional: 1000 m DN 100
- HDD: 100 Transports with Trucks - 2

CO₂ Emission

- Offene Bauweise (Open Construction Method)
 - CO₂ emissions

- Grabenlose Bauweise (Pipeless Construction Method)
 - CO₂ emissions
Project details:

Application: main sewer
Location: city; 2 track road; left track; grass strip 3m
Length: 250 m
Depth: 4,50 m
Breadth: 1,50 m
Pipes: DN 600
Geology: gravel/clay (density 1,70 t/m³)
Groundwater: -

<table>
<thead>
<tr>
<th>litre Petrol</th>
<th>2,33 kg CO₂ * / 2,37 kg CO₂ **</th>
<th>litre Diesel</th>
<th>2,64 kg CO₂ * / 2,65 kg CO₂ **</th>
</tr>
</thead>
<tbody>
<tr>
<td>(total burning)</td>
<td>Source: Umweltbundesamt*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditions:

- **Site-condition:** good
- **100% removal of excavated soil**
- **Fuel consumption (litre/kWh):** (from register of construction equipment)
- **Diesel consumption in l CO₂-emission in kg:**
 \[3,154 \text{ kg CO}_2/\text{kg fuel} \times 0.82 \text{ kg/L (diesel)} = 2.64 \text{ kg CO}_2/\text{litre}\]
- **Treatment of asphalt:** per 1 to ca. 7 - 8 l diesel

Conventional method (70 days):
excavation + laying + backfilling + compaction: max. 4 m / day (without road surface)
Road finishing machine max. working breadth 2 m

Trenchless (40 days):
Capacity: ca. 4 pies (12 m) / day
Starting pit: DN 3000/DA 3600; target pit: 2x DN2500/DA3000
Construction time: 30 h
CO₂ Emission – Beispiel konventionelle Methode

register of construction equipment (konventionelle Methode)

<table>
<thead>
<tr>
<th>Betriebsdaten</th>
<th>Beschreibung</th>
<th>Leistung</th>
<th>Verbrauch</th>
<th>Formel der Leistung</th>
<th>Betriebszeit</th>
<th>Verbrauch Diesel in kg</th>
<th>CO₂ Ausstoß in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>パーティクルCKER</td>
<td>Räder</td>
<td>10,0 kW</td>
<td>0,16</td>
<td>650</td>
<td>12,8</td>
<td>8,320,0</td>
<td>33,8</td>
</tr>
<tr>
<td>LKW/Lastkran</td>
<td>200</td>
<td>0,14</td>
<td>601</td>
<td>22,4</td>
<td>11,222,4</td>
<td>59,1</td>
<td>29,927,1</td>
</tr>
<tr>
<td>LKW/Lastkran</td>
<td>140</td>
<td>0,14</td>
<td>20</td>
<td>17,9</td>
<td>368,4</td>
<td>47,3</td>
<td>948,2</td>
</tr>
<tr>
<td>Dumper</td>
<td>3,10 kW</td>
<td>0,16</td>
<td>740</td>
<td>5,6</td>
<td>1,568,0</td>
<td>14,8</td>
<td>4,139,0</td>
</tr>
<tr>
<td>Pfahlbohrer</td>
<td>1,71 kW</td>
<td>0,16</td>
<td>6</td>
<td>53,3</td>
<td>318,7</td>
<td>140,7</td>
<td>644,0</td>
</tr>
<tr>
<td>Schneidzylinder</td>
<td>0,80 kW</td>
<td>0,16</td>
<td>20</td>
<td>10,5</td>
<td>206,9</td>
<td>27,7</td>
<td>554,2</td>
</tr>
<tr>
<td>Tandem - Vibrationswalze</td>
<td>50</td>
<td>0,16</td>
<td>40</td>
<td>3,8</td>
<td>150,6</td>
<td>93,1</td>
<td>405,5</td>
</tr>
<tr>
<td>Explosionssteigerung</td>
<td>2,7</td>
<td>0,16</td>
<td>1</td>
<td>130</td>
<td>0,4</td>
<td>56,2</td>
<td>1,0</td>
</tr>
<tr>
<td>Doppelschneidzylinder / handgeführt</td>
<td>3,82 kW</td>
<td>0,16</td>
<td>325</td>
<td>0,7</td>
<td>234,0</td>
<td>1,9</td>
<td>617,8</td>
</tr>
</tbody>
</table>

59,23 t
CO₂ Emission – Example trenchless method

register of construction equipment (trenchless)

<table>
<thead>
<tr>
<th>Betriebsdaten</th>
<th>Beschreibung</th>
<th>EBO 2001</th>
<th>Leistung</th>
<th>Verbrauch</th>
<th>Verbrauch Trenchless</th>
<th>CO₂ Ausbrüt in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlageneinheit</td>
<td>Bem. ca. 40 Tage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stromaggregat - Leistung (200kW)</td>
<td>Kesselo</td>
<td>286</td>
<td>0,15</td>
<td>0,6</td>
<td>120</td>
<td>23,9</td>
</tr>
<tr>
<td>Stromaggregat - Stilstrick</td>
<td>Kesselo</td>
<td>286</td>
<td>0,15</td>
<td>0,2</td>
<td>170</td>
<td>5,0</td>
</tr>
<tr>
<td>Schaltschrank auf Festbetten</td>
<td>Kesselo</td>
<td>100</td>
<td>0,15</td>
<td>0,8</td>
<td>200</td>
<td>12,0</td>
</tr>
<tr>
<td>UMW / Muldenkipper</td>
<td>Kesselo</td>
<td>200</td>
<td>0,14</td>
<td>0,5</td>
<td>58</td>
<td>22,4</td>
</tr>
<tr>
<td>UMW / Drehkreiskipper</td>
<td>Kesselo</td>
<td>180</td>
<td>0,14</td>
<td>0,5</td>
<td>42</td>
<td>17,9</td>
</tr>
<tr>
<td>Pelleler</td>
<td>Kesselo</td>
<td>50</td>
<td>0,16</td>
<td>0,7</td>
<td>55</td>
<td>5,4</td>
</tr>
<tr>
<td>Doppelvertikutonatoren / handgeführt</td>
<td>Kesselo</td>
<td>5</td>
<td>0,16</td>
<td>0,3</td>
<td>5</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Total CO₂ Emission: 22,25 t
CO₂ Emission - Example

trenchless method 22,2 tons CO₂
conventional method 59,2 tons CO₂

267 % more
CO₂ -Emission!

CO₂ Emission - Example

CO₂ -emissions due to traffic jam, conventional method:
100 cars / duration 15 minutes
(2,48 kg CO₂ / l - 10 l / h fuel consumption)
→ 0,62 t CO₂ (100 cars / 15 min)
→ 2,48 t CO₂ (100 cars / h)
→ 14,88 t CO₂ (2 x 3 h / day)
→ 74,44 t CO₂ (2 x 3 h x 5 days)
→ 1,041,60 t CO₂ (2 x 3 h x 70 days)
CO₂ Emission - Example

trenchless method 22.2 tons CO₂
conventional method 59.2 tons CO₂ + 1,041.6 tons CO₂

~ 5000 % more

CO₂ - Emission!

Overall view Trenchless Technologies

New Installation
 Geological Survey
 Semi Trenchless
 Wide Trench
 Narrow Trench
 Ploughing
 Vacuum Excavation
 Trenchless
 Directional Horizontal Drilling (HDD)
 Auger Boring
 Pipe Ramming
 Impact Moling
 Pilot Tube
 Location
 Ground Penetrating Radar
 Sonar
 Potholing

Trenchless Construction Technologies
 Renovation
 Non-structural
 Cement mortar Lining
 Epoxy Lining
 Polyurethane Lining
 Structural
 Close-fit Sliplining
 Tight in Pipe Lining (TIP)
 Slippining
 Spiral Wound Lining
 Glass-fibre reinforced CIPP Lining
 Felt CIPP Lining

Rehabilitation
 Condition Assessment
 CCTV
 Leak Detection
 Location
 Ground Penetrating Radar
 Sonar
 Potholing
 Sensor-based pipe run survey
 Replacement
 Pipe Bursting
 Pipe Splitting
 Pipe-Eating
 Pipe Extraction
 Joint Grouting
 Localised Sealing
 Potholing for Local Repair
 Repair with Sleeves
 Flood Grouting
 Repair
 Grinding and repair robots
Why Trenchless Technology ?!

3 Examples of the plurality of trenchless techniques:

For New Construction:
- HDD - Horizontal Directional Drilling (DN 25 – DN 1800)
- Microtunnelling (DN 250 – DN 4200)

For Rehabilitation:
- CIPP - Cured-in-place pipe rehabilitation (DN 50 – DN 1800)
Overall view Trenchless Technologies

Horizontal Directional Drilling (HDD)
Horizontal Directional Drilling (HDD)
Horizontal Directional Drilling (HDD)
Horizontal Directional Drilling (HDD)

- 300 m Länge – 15 t-Anlage
- 460 m Länge – 20 t-Anlage
- 800 m Länge – 100 t-Anlage
- 2100 m Länge – 450 t-Anlage

QUELLE: Tracto Technik
Horizontal Directional Drilling (HDD)
Microtunnelling with auger soil removal

Diagram showing the process of microtunnelling with auger soil removal.
Microtunnelling with slurry system
Microtunnelling with slurry system
CIPP - Cured-in-place pipe rehabilitation - Glas-Fibre-Liner Design

CIPP - Setup of the building site and preparation works
CIPP - Setup of the building site and preparation works

CIPP - Pull-in of the pre-liner
CIPP - Pull-in of the Glas-Fibre-Liner

CIPP - Expansion of the Glas-Fibre-Liner
CIPP - Curing process with UV-light train

CIPP - Cured-in-place pipe rehabilitation
Symposium and Exhibition
26 – 28 March 2019
www.NODIGBERLIN.com
Fairground Berlin

Sitevisiting at 2017-03-30:
approx. 500 visitors visit
approx. 12 construction sites with
Trenchless Technologies

Dr.-Ing. Klaus Beyer
Executive Director
German Society of Trenchless Technology E.V. (GSTT)